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We obtain and study an analytical solution for the one-dimensional problem of 
the filtration of a solution in cracked-porous media with allowance for the 
dependence of the saturation concentration on the composition of the solution. 

Mathematical simulation of mass transfer during filtration of solutions in cracked- 
porous media is of interest in relation to the contamination of subterranean water and the 
determination of the structure of zones where ground waters with different compositions 
mix. At a constant saturation concentration the salient features of such mass transfer are 
described by the known solutions of the problem of the migration of radioactive pollution 

in cracked rocks [I, 2]. In actual fact, the saturation concentration is variable as a rule 
and depends on the composition of the subterranean water. Below we give a generalization of 
the solutions [I, 2] to this case. 

I. Formulation of the Problem. When mathematical models of mass transfer in cracked- 
porous media are being substantiated it is usually assumed that the permeability of the 
porous matrix (blocks) is several orders of magnitude lower than that of the cracks. This 
gives rise to ideas concerning the existence of two main transfer mechanisms, convective in 
cracks and molecular-diffusion in blocks [3, 4]. 

Let us consider how a cracked-porous medium filled with a solution with equilibrium 
concentration c,, reacts when a solution with a different composition penetrates into the 
cracks. We assume that the flow is uniform and the filtration flow rate v is constant. The 
incoming solution contains a passive impurity which affects the solubility of the substance 
of the porous matrix. 

The mass transfer in the cracks is described by 
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O is the concentration of the passive impurity [6]; u is a constant; and D(v) - const is 
the effective diffusion coefficient. The quantity q2 is determined from the solution of 
ancillary problem of mass transfer in a typical block [4]: 
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where o = 2m/H is the specific area of "windows" from blocks in cracks [i]; H is the crack 

opening; and a tilde denotes a block parameter. The distribution of the passive impurity is 
also described by Eqs. (1)-(7) when c = O, 7 = v = c, = 0 and O(0, t) = O0 in Eq. (2). The 
solution of the problem for this case is known [4]. The problem considered in [i, 2] is 
obtained when O ~ 0, c, = 0. 

The mathematical model of mass transfer in the form (1)-(7) reflects the main fea- 
tures of the formation and structure of the mixing zones during the return flow of subter- 
ranean waters from massive rock of one composition into a massif with a different composi- 
tion and also during the migration of pollutants from the compact zone of the massif. We 
note that the boundary condition in (6) corresponds to the case of a block of unbounded 
volume (half-space). For times t << L2/D (i is the characteristic linear size of the block) 
Eqs. (5) and (6) reflect the process of mass transfer in a block of any configuration [3]. 

2. Fundamental Relations, It is convenient to use the Laplace transform when con- 
structing the solution of the problem (1)-(7). According to [4], the distribution of the 
passive impurity for cracks in the space of transforms is described by 
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Going o v e r  to  d i m e n s i o n l e s s  t ime A = t D a  z and a p p l y i n g  the  L a p l a c e  t r a n s f o r m a t i o n  to  t he  
right side of (8), we obtain 
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where ~ = ay. 
When the impurity distribution is known the value of the flow q2 from the blocks is 

found from the solution of the problem (4)-(6), which the substitution u - (6-c,)exp(~t) 
and fl = 7/m reduces to the familiar problem of heat conduction with distribution heat 

sources [8]: 
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u (g, 0) = 0, u (0, t) = (c - -  c , )  exp ([~t). 

Using its solution [8, p. 215], we obtain for q2 the expression 
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Now for the concentration in the cracks we have in the transforms the equation 
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With the initial-boundary conditions corresponding to (2), its solution is 
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The latter was found in [i]. Omitting the final result because it is so cumbersome, we 
confine the discussion here to the asymptotic behavior of the solution for long times. 
Small values of s correspond to them in the transforms [9]. Disregarding quantities of the 
order of s or higher in (i0), we obtain 
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At t - m this suggests a description of the structure of the stationary mixing zone: 
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The results can be generalized to the case of a block of finite size. As in [2], for 
this purpose we consider a system of parallel cracks separated by a layer (blocks) of 
thickness i. The initial-boundary conditions (6) for the concentration in the block are 
replaced by 
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Further discussions are carried out in a similar manner for the case of a block of 
unbounded size. As a result the transform of the solution is obtained in the form 
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To reproduce the original of (12) it is sufficient to know the original of 
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The latter was found in [2]. The structure of the stationary mixing zone is described by 
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3. Discussion. I. The existence of a mixing zone in the above problem at t ~ ~ is due 
only to the source of concentration from the interaction of the solution with the rock. In 
actual fact, in the absence of sources (7 = 7 - 0) Eq. (II), which describes the structure 
of this zone, degenerates into the equality w - 1 or c - c I. The mass transfer in the 
blocks is affected only on the effective length 2 of the mixing zone, which is determined 
from the exponent in (Ii). In the general case 
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We note that 2 o > 2. 
2. Under real conditions, as a rule, • . The solution of the problem for 

a system of cracks (12) goes over as • ~ 0 into the solution (I0) for a block of infinite 
size. Study of the case x - 1 thus is not of major importance in itself. 

3. The scheme adopted for solving the initial problem is fairly universal and admits 
generalization. Thus @ can be construed as the concentration of a radioactive impurity. Its 
distribution in blocks and cracks was found in [i, 2]. The radiolysis products shift the 
heterogeneous equilibrium [i0] and change the saturation concentration. If this change is 
described by Eq. (4), the solution is obtained in much the same way as (i0). The structure 
of the corresponding stationary mixing zone is characterized by 
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where 6 = in 2/tl/z, ill 2 is the half-life, 6 o = m6/(va), and 61 - 6/(Da2). At 6 = 0 Eq. (14) 
goes over into Eq. (Ii). Radioactive decay leads to the depletion of the impurity at infin- 
ity and, therefore, c(x, ~) tends to c,, as x ~ ~. 

NOTATION 

x, y, coordinates; t, r, time ; c, concentration of the dissolving substance in the 
liquid; @, concentration of the passive impurity; c,, equilibrium concentration of the 
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solution at @ ~ 0; v, filtration flow rate; D, effective diffusion coefficient; ql, flux of 
dissolved substance from the crack walls; qz, flux of dissolved substance from the blocks; 
7, dissolution rate constant; m, crack volume; H, crack opening; a, specific area of "win- 
dows" from blocks into cracks; L, thickness of the porous block; s, Laplace transform pa- 
rameter; ~ = ox and ~ = ay, dimensionless length; Pe - v/(mDa), Peclet number; A = tDa z, 
dimensionless time (the tilde denotes the respective parameters of the block); # = 7/m, 
reduced rate constant of dissolution in the block; w - (c - c,)/(c I - c,), dimensionless 
concentration; #i ~ #/(Da2), dimensionless rate constant of dissolution in the block; 7o 
7/)va), dimensionless rate constant of dissolution in the crack; ~, K I z vT0@0/(c I _ c,), 
constant; ~ = (Lo) -I, dimensionless scale parameter; 6 = In 2/ti/2, rate constant of radio- 
active decay; and tl/2, half-life. 
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